

Genetic Variation in Disease Resistance of Chinook Salmon (*Oncorhynchus tshawytscha*) Exposed to Two Bacterial Pathogens

Jeff Hard & Linda Park NMFS Northwest Fisheries Science Center, Conservation Biology Division, Seattle WA

Diane Elliott, Ron Pascho, Dorothy Chase & Jim Winton USGS Biological Resources Division, Western Fisheries Research Center, Seattle WA

Don Campton
USFWS Abernathy Fish Technology Center, Longview WA

Acknowledgments

- Carson National Fish Hatchery staff (Manager Bill Thorson and Hatchery personnel)
- Abernathy Fish Technology Center staff (Jeff Poole, Richard Glenn and Center personnel)
- USGS BRD Western Fisheries Research Center staff (Chip Applegate, Connie McKibben, Tony Murray, Maureen Purcell and Stewart Alcorn)
- Kathy Clemens, Director, USFWS Idaho Fish Health Center, Orofino, Idaho
- Bonneville Power Administration funding (Project 2000-072-0)

Study organisms

Renibacterium salmoninarum (FAO Finfish Diseases)

Juvenile chinook salmon with BKD (NWFSC Microbiology)

Listonella anguillarum (J. Crosa, OHSU)

Vibriosis hemorrhage (www.aquaculture.bz)

Background

- Bacterial kidney disease (BKD), caused by *Renibacterium* salmoninarum, is widespread in salmon hatcheries in the Pacific Northwest
- BKD is difficult to control because effective vaccines have not yet been developed; antibiotic therapy is only partially effective
- Oral chemotherapy of salmonids with erythromycin can reduce mortality but does not eliminate infections from all treated fish
- Many hatchery programs selectively cull progeny of adults that exhibit high antigen titers (ELISA) for *R. salmoninarum* to minimize risk of BKD outbreaks
 - Culling probably reduces likelihood of disease
 - Is culling likely to affect future disease resistance?

Study questions

- Does the level of *R. salmoninarum* antigen, as measured by ELISA, in adult chinook salmon indicate the susceptibilities of their progeny to infection by *R. salmoninarum* or by *Listonella* (formerly *Vibrio*) *anguillarum*?
- What is the degree of genetic influence on variation in the two susceptibilities?
- Is there evidence that the two susceptibilities can evolve independently?
- What are the implications of the relationship between susceptibilities for salmon broodstock management and disease control?

Breeding design

- A total of 48 families created from 24 males and 48 females (415 males and 84 females screened, 84 original families constructed)
- 3392 fish PIT tagged and phenotypes evaluated

Patterns among families in survival

Proportion surviving vs sire ELISA

Survival

- In both pathogen trials, survival varied substantially among half-sib (but not full-sib) families, depending on the sire ELISA
- Proportion surviving in the *Renibacterium* trial was higher for progeny of sires with low ELISAs; proportions surviving in the *Listonella* trial was similar for progeny in both sire groups
- Proportion surviving in the *Renibacterium* trial increased with sire ELISA in the high sire group (may be artifact)
- Proportion surviving in the *Listonella* trial increased with sire ELISA in the low sire group
- Proportion surviving in either trial did not vary significantly with dam ELISA, regardless of sire ELISA

Temporal distributions of mortalities

Patterns in days to death

Days to death

- In both pathogen trials, days to death varied substantially among full- and half-sib families
- In both trials, mean days to death were similar in progeny of sires with low vs high ELISAs
- For progeny of sires with high ELISAs, days to death varied significantly with both sire and dam ELISA
 - Longevity increased with dam and sire ELISA in the Renibacterium trial
 - Longevity decreased with dam and sire ELISA in the Listonella trial

Survivor ELISA

Survivor and parent ELISAs

Survivor ELISAs

- ELISAs of survivors varied substantially among both half- and full-sib families
- Survivor ELISAs were higher in the low sire group, but did not vary detectably with either parental ELISA
- Survivors from families with higher survival rates tended to have lower ELISAs than those with lower survival rates, but the relationship was weak

Additional key results

- Families with higher survival rates when challenged with Renibacterium had lower survival rates when challenged with Listonella
- In both challenges, mortalities in families with higher survival rates tended to die sooner
- Families with members that died sooner in the *Renibacterium* challenge had members that lived longer in the *Listonella* challenge

Trait variation and heritability

Trait	n	Mean	V_{p}	CV	V_A	h ²	SE(h ²)
RS	1962	0.771	0.176	54.466	0.042	0.455	0.101
RD	450	103.711	598.142	23.582	105.307	0.176	0.063
LS	1430	0.200	0.196	199.870	0.005	0.069	0.044
LD	1144	3.343	0.615	23.541	0.084	0.137	0.044
OD	942	0.578	0.110	57.281	0.027	0.249	0.069

Architecture of trait variation

Conclusions

- Survival on exposure to *Renibacterium* but not *Listonella* showed evidence of substantial genetic influence; longevity in both trials showed evidence of modest genetic influence
- Survival in the *Renibacterium* challenge varied with sire but not dam ELISA, was higher for progeny of sires with low ELISA, and increased with sire ELISA in the high sire group
- Survival in the *Listonella* trial increased with sire ELISA in the low sire group
- Longevity depended on parental ELISAs in the high but not low sire group
- In the *Renibacterium* trial, survivors from families with higher survival tended to have lower ELISAs, but no clear evidence that ELISAs are related to parental titers (or reflect variation in "resistance")
- Inverse genetic relationships for several traits expressed in responses to the two pathogens suggests that antagonistic pleiotropy underlies the basis for the different responses

Implications

- Study results underscore the complexity of resistance of salmonids to bacterial pathogens and indicate the potential for rapid evolution of host resistance
- Results are consistent with a hypothesis that host responses to the two pathogens differ
- Study results provide no evidence that genetic variation in antigen load is linked to resistance to *Renibacterium*, as measured by survival
- Results suggest a genetic consequence of culling hatchery broodstock based on ELISA titers
- Among the potential longer-term outcomes of such BKD control practices is reduced resistance to *Listonella* as well as altered resistance to *Renibacterium*